Beijing Plink AI Technology Co., Ltd

Beijing Plink AI is an expert of cloud-to-end one-stop solution.

Manufacturer from China
Active Member
3 Years
Home / Products / Embedded PC Board /

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing

Contact Now
Beijing Plink AI Technology Co., Ltd
City:beijing
Province/State:beijing
Country/Region:china
Contact Person:MsCindy
Contact Now

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing

Ask Latest Price
Video Channel
Brand Name :Hua Wei
Model Number :Ascend Atlas 200
Place of Origin :China
MOQ :1set
Price :To be negotiated
Payment Terms :L/C, D/A, D/P, T/T
Supply Ability :Batch purchase price negotiation
Delivery Time :15-30 work days
NAME :Ascend Atlas 200 AI Module 8 GB 128 bits Ubuntu Deep Learning Carrier Board Edge Computing
Keyword :Ascend Atlas 200 AI Module 8 GB 128 bits Ubuntu Deep Learning Carrier Board Edge Computing
AI processor :Two Da Vinci AI cores Eight A55 ARM cores (maximum frequency: 1.6 GHz)
AI compute power :Half precision (FP16): 4/8/11 TFLOPS Integer precision (INT8): 8/16/22 TOPS
Half precision (FP16) :4/8/11 TFLOPS
Integer precision (INT8) :8/16/22 TOPS
Memory :8 GB 128 bits LPDDR4X
Storage :64 MB eMMC 4.5
Net weight :30g
Dimensions :8.5 mm x 52.6 mm x 38.5 mm
more
Contact Now

Add to Cart

Find Similar Videos
View Product Description

Ascend Atlas 200 AI Module 8 GB 128 bits Ubuntu Deep Learning Carrier Board Edge Computing

Hua Wei Ascend Atlas 200 AI Accelerator Module

The Hua Wei Ascend Atlas 200 AI accelerator module has eight Cortex-A55 cores and provides common peripheral ports such as I2C, USB, SPI, and RGMII. It can be used as an embedded system CPU.You can burn the OS to the embedded multimedia controller (eMMC) flash or an SD card. After simple configuration, the ARM CPU in the Atlas 200 AI accelerator module can run users' AI service software.Generally, in this application mode, the Atlas 200 AI accelerator module is connected to simple external devices such as IP cameras (IPCs), I2C sensors, and Serial Peripheral Interface (SPI) displays.The coprocessor application mode and main processor application mode of the Atlas 200 AI accelerator module are similar. The ARM processor of the Hua Wei Ascend Atlas 200 AI accelerator module can still run users' AI service software. The difference is that when the Atlas 200 AI accelerator module is used as a coprocessor, the system has a main processor. The main processor controls operations on the Atlas 200 AI accelerator module, such as peripheral access, power-on, hibernation, and wakeup. The external interfaces required by users' AI service software are also transferred by the main processor.The main processor can control the Hua Wei Ascend Atlas 200 AI accelerator module to enter the deep sleep state through the GPIO pins. When necessary, the Hua Wei Ascend Atlas 200 AI accelerator module can quickly wake up to process AI services. This mechanism reduces the power consumption.

Specifications about Hua Wei Ascend Atlas 200

Feature

Specification

AI processor

Ascend 310 AI Processor

Two Da Vinci AI cores

Eight A55 ARM cores (maximum frequency: 1.6 GHz)

AI compute powera

Half precision (FP16): 4/8/11 TFLOPS

Integer precision (INT8): 8/16/22 TOPS

Memory

8G 128 bits LPDDR4X

Storage

64 MB eMMC 4.5

Encoding/Decoding capability

H.264/H.265 decoder, 20-channel 1080p (1920 x 1080) 25 FPS, YUV420

H.264/H.265 decoder, 16-channel 1080p (1920 x 1080) 30 FPS, YUV420

H.264/H.265 decoder, 2-channel 4K (3840 x 2160) 60 FPS, YUV420

H.264/H.265 encoder, 1-channel 1080p (1920 x 1080) 30 FPS, YUV420

JPEG decoding at 1080p (1920 x 1080) 256 FPS and encoding at 1080p (1920 x 1080) 64 FPS, up to 8192 x 4320 resolution

PNG decoding at 1080p (1920 x 1080) 24 FPS, up to 4096 x 2160 resolution

Temperature

Operating temperature: -25°C to +80°C (-13°F to +176°F)

Storage temperature: -25°C to +85°C (-13°F to +185°F)

Humidity (RH, non

condensing)

Operating humidity: 5% to 90%

Storage humidity: 5% to 95%

Power consumption

Operating voltage: 3.5 V to 4.5 V; recommended typical value: 3.8 V

Typical power consumption

– 4 GB: 6.5 W

– 8 GB: 9.5 W

Maximum altitude

< 5000 m When the altitude is between 1800 m (5905.44 ft.) and 5000 m (16404 ft.), the maximum operating temperature decreases by 1°C (1.8°F) for every increase of 220 m (721.78 ft.) in altitude.

Dimensions (H x W x D)

8.5 mm x 52.6 mm x 38.5 mm (0.33 in. x 2.07 in. x 1.52 in.)

NOTE

The connector model of the Atlas 200 AI accelerator module is fixed. You can select male connectors with different heights to determine the height of the Atlas 200 AI accelerator module.

Net weight

30g

Operating system (OS)

Ubuntu 16.04

Deep learning framework

TensorFlow, Caffe

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing

Inquiry Cart 0